tEVA110 COMPACT GEARBOX DUMMY

DESCRIPTION

The tEVA110 is a gearbox dummy with changeable quill shaft, used in test beds for engines with original vehicle clutch or clutch dummies.

The modular design with replaceable quill shaft allows quick adaptation to different engines and couplings. The gearbox dummy comprises a solid housing with sensors for bearing temperature monitoring, an integrated bearing and a quill shaft. The torsional stiffness can be optimized by modifying the torsion bar geometry.

OPERATING RANGE

Torque:	up to	1000 Nm
Speed:	up to	10000 rpm

BENEFITS

- modular design
- fast exchange of quill shaft
- direct interface to the coupling
- adaptable use of coupling
- integrated temperature monitoring
- compact design
- optional: integrated pilot bearing

Exclusive Representative in Japan

515-5 Miyazawa-cho, Akishima city, Tokyo, Japan 196-0024 TEL: +81-42-546-6500 FAX: +81-42-546-6600 Email: sales@tokyo-plant.co.jp

tEVA110 COMPACT GEARBOX DUMMY

tEVA110		
Mass	[kg]	2.96
Maximum speed	[rpm]	10000
Maximum torque ¹	[Nm]	1000
Minimum torsional stiffness ² c_T	[Nm/rad]	4500
Engine-side inertiaJ1	[kgm ²]	Customer-specific
Gearbox-side inertiaJ $_2$	[kgm ²]	Customer-specific
Minimum operating temperature	[°C]	-30
Maximum operating temperature	[°C]	100

The quill shaft geometry and composition is dependent on customer requirements and the engine type. The quill shaft (drawn with dashed lines) is only shown for clarity.

Gearbox dummy	Joint	D	В	b	с	е	g	h (gб)	k	n	р	q	t	u (H7)	w	x
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[-]	[-]	[mm]	[mm]	[mm]	[mm]
tEVA110	CV05	145	104.8	74	128	8.4	15	78	10	4.5	M8	M10	12	86	7	10
	CV15	145	104.8	94	128	8.4	15	78	10	2.5	M10	M10	12	108	7	10

 $^{^{1}}$ The maximum torque must be the same as or larger than the maximum torque of the internal combustion engine, and is dependent on the geometry and the quill shaft material.

 $^{^{2}}$ The stiffness is dependent on the geometry and the material of the quill shaft.